HayuHbi# kypHan HUY UTMO.
Cepusa «lpouecchbl 1 annapaTbl NULWEBLIX MPON3BOACTB» Ne 2, 2014

VJIK 641.528

HUccaenoBanue HANPS)KEHHbIX COCTOAHUN KOHCTPYKIUI B mpolecce
MOJI3YYECTH C 1[eJIbI0 OIeHKU HAH0O0IbIIIEero HANPSAKEHHU

®epoposa JLLA., kano. mexn. nayk, npogp. Mansasko JLII.,

EauceeB A.M. Elianto992@gmail.com

Ynusepcumem UTMO
Hnemumym xonooa u 6uomexuonoutl
921002, Canxm-Ilemepbype, yn. Jlomonocosa, 9

Ilpeocmasnennvie pewtenus O0awom aAHANU3 HARPANCEHHOZ0 COCMOAHUA  PACCMOMPEHHBIX
KOHCMPYKYUil, CO2NACHO KOMOPOMY ORDPEOenAmca MaKCUMANbHbIE HANPAJNCEHUA 6 mamepuane
Koucmpykyuit 0aa N=I1 (cocmosanue nunenunHol ynpyzocmu) u 014 N= (pewienue ¢ ciyuae ueanbHOU
naacmuunocmu). Bee pewienus npusedensvt 01a pasnuyuHvix 2e0MeMPULECKUX NApamempos KOHCmpyKuuil,
PAa3UYHBIX 2PAHUYHBIX YCI06UT U HeCKONbKUX 3Havenui M (M=1/n). pesyromameot evruucnenuil nokazanvl
2pacpuuecku. B coomeemcmeuu c zpagpuxamu onpeoensaomcs 3Ha4eHus OMHOCUMENbHO20 KOIPuyuenma
Konyenmpayuu nanpaxcenus Fn. Ecau koygppuyuenm Fn, uzeecmen, mo maxkcumanvnvie Hanpax;ceHus
KOHCMPYKYUU 6 COCIMOAHUU NOJIZyHecmu HEempPyOHO OueHumbv (Ha OCHOGe NUHENHO-YNPY2020 AHANU3A) 6
3aeucumMocmu om HAazpy3Ku U 2e0MempudecKux XapaKmepucmux 3moii KOHCMpPYKyuu.

Ilokazano, umo ecnu pacnpedenenue HANPANCEHUN U3IEECMHO 0714 CYYAA JUHEHHOU YRPy20Ccmu
(n=1), mo ckopocmv uzmenenus nanpaxycenuii (U, 6 0COOEHHOCMU, MAKCUMAILHO20 HANPANCEHUS) 6
3aeucumocmu om N MOMNCHO OnpeodeIums, RO CYU{ecnay, NO00OHO peuwleHur0 3a0auu 0 JUHEILHO-YRPYZUX
memnepamypHslX HANPANCEHUAX, MAK KAK «memnepamypuuviey Oeopmayuu eviparcaromcsa 6 00buiei
CMmenenu 6 UsMEHEeHUU Popmbol, uem 6 USMEHEHUU 00bvema.

Knwoueswvie cnosa: non3ydects, U3rndarOMUl MOMEHT, pailaIbHOE U OKPY’KHOE HalPSKEHUS,
nedopmarusi, rpaHU4YHOE YCIOBHE.

Investigation of stress state for estimating the greatest stress in structures
subject to creep

The solutions to be represented give analysis of stress state of the structures considered. According to
this analysis the greatest stresses in the structures for n=1 (linear-elastic structures) and n=c (the perfectly
plastic solution) are determined. All the solutions are given for different parameters of the structures,
different boundary conditions and several values of m (m=1/n). The results are shown graphically.
According to the graphs relative stress concentration factor Fp, can be determined. As F, is known, the
greatest stress in a structure subject to creep may be estimated without too much difficulty (by linear-elastic
analysis) in terms of the applied load and the geometrical parameters of the structure.

It is shown, that if the stress distribution is known in the linear case (n=1), the rate of change of the
stresses (and in particular of the greatest stress) with n may be determined from, essentially, a linear-elastic
thermal stress problem as the “thermal” strains consist of changes in shape rather than changes in volume.

Keywords: creep, bending moment, redial and circumferential stresses, strain, boundary condition.

The structures considered [1] are shown schematically in Table 1.

All the usual assumption of linear-elastic small deflection theory are used [5] ; thus we
learn nothing, for example, about local stress concentration effects in the regions where plates
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join thicker plates (structure E) or rigid foundations (structure D). Nor do we learn anything
about plates with membrane action.

Thus while it may seen paradoxical that acute, local, stress concentration effects have
been ignored, it seems clear that the study, in so far as it leads to empirical general conclusions,
may be of some use in tackling problems of local stress concentration factors.

In Fig. 1 the relative stress concentration factor Fm [1] is plotted against the material
parameter m, which is the reciprocal of the exponent n [1]:

m=—.
n

The factor Fm is defined as on the following equation [1]:

Greatest stress in structure for materialn =r
Greatest stress in structure for materialn =1’

T

But with an obvious change of subscript.

For most of the structures solutions were obtained, in addition to those for n=1 and n=o0
(m=1 and m=0, uspectively) for m=0.1; 0.2; 0.4; 0.6; and 0.8

Table 1 gives for each structure the value of the greatest stress, 7,4, in terms of the load
and geometrical parameters for the case n=1. Use of this expression in conjunction with the
appropriate graph in Fig. 1 gives the value of 7,,,, for any load and value of the exponent n.

Further details of the methods of solution for the various structures are represented (they
were not given in paper [1] because their inclusion would made it too long)



HayuHbi# kypHan HUY UTMO.

Cepua «[lpouecchl M annapaThbl NULLEBbLIX NPON3BOACTBY Ne 2, 2014
l L ) A
total area A  axisof
h bending - M 6
A | ,_ flangearea  moment M| Oy ™ AR 2vH
A | Y

I - section in pure bending
total load W S

4
2 Y vV Y VvV Y Y VY ¥ Y VY'Y / f h - W l ) 1
B Y ; % Gmax, n=I Ah 2v+]

cross section as in A above

uniformly loaded beam with clamped ends

massdensityp """ total uniformly

\:> . V: destributed edge ol _ Pazwz( 7 +£)
C " (’)J . mass=f+mass| maxn=I g 16 2
" e of disc

| S

rotating parallel - sided disc

@ A UATITT

y.s

pmsurep-v* ; a =

g Y,h —
2 [N s

NN

D| 4 oibiiiiiail o, :
9 ) — a 21
: | - ‘ (b) O-max n:1: p?]_
uniformly loaded circular plate ’
(a) clamped edge (b) simply supported edge
stress p remote ESY
-m% ' 7 LT —> )
| lemboe . vol.ofmaterial added | Pmaxni~ U3 fa’
~ vol. of material cut out 4 b’
symmetrical stretched sheet with hole and ring
reinforcement
closed ends - bVF
F internal i P
pressure p

thick - walled tube under internal pressure

Table 1.



HayuHbi# kypHan HUY UTMO.

Cepua «[lpouecchl M annapaThbl NULLEBbLIX NPON3BOACTBY Ne 2, 2014

1.0 .
S s ] | =
e =22 (Gl | 2
O 9 / r / I-SEC M) /
7 V=0, /’ i V4
08 (K irs A / / Wi
/ V= 05/
0.7 —4
/" v = () (SOLID RECTANGILE) /
7 P
0.6
- A v=|0 (SOLID RECTANGLE) B
0.9 <z //‘ ‘ (a) A/
x p=Y CLAMPEDEDGE |/
B=02 \/
08 EAT LY
F 1 /
"07 W__B=06 //
(b)
0.6 / S.S. EDGE
C D
0.5
-3 7
1.0 5 L ' 57
i 1.5,ﬁ=1.5 a = 12‘)\/%
0.9 v / =]
" 5, /= / 1.1
08— # s b 74
: LI
F ’ —
0.7 v bh—- = / /
7 |15 /705 -f%=1.5/
0.6 \
UNREINFORCED %)
05 | 2B O Rl
. T
0 0.2 04 06 08 10 0 02 04 06 08
m m

Fig.1 Results for structures shown in Table 1
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Details of the various solutions.

A. | —section in pure bending.

This is a very simple problem. By symmetry the neutral axis is at the centre of the
section. As “plane sections remain plane” it is a straightforward matter to express the strain rate
at any distance y from the neutral axis in terms of y, the rate of change of curvature of the
section, and the material constants [7]. Appropriate integration gives the bending moment, and
a little algebra puts the results in the desired form.

B. Uniformly loaded beam with clamped ends.

The origin was taken at the centre, and the ends of the beam were regarded as “floating
boundaries”.
By statics the bending moment is of the form

Wx?
2

M=M0_

The rate of change of curvature, k is related to the banding moment by a law [3]
k=DM"™,

In which D depends on the cross-section shape and size and the material constant B. Thus
for any finite value of n, k may be determined as a function of x. Integration of k with respect
to x gives the rate of change of slope. Which is zero by symmetry at x=0. Integrating

graphically to x=I for which
l-
j kdx =0
0

Gives the value of x at the end of the beam: this is used in the first equation to give the
fixed-end moment M, which is readily expressed in terms of the total distributed load and the
length of the beam. For the case n—o0 conventional perfectly plastic analysis is used. Use of the
results of A, above, enables the results to be presented in the form of Fig. 1.

C. Rotating parallel sided disc.

The equilibrium equation at radius r is

dt, T —1,

Where 7, and 74 are radial and circumferential stress, respectively,

_po’

a

. (2)

And p and o as defined in Fig. 1. The strain rate compatibility equation is
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dé"g ér - ég

= Tt (3)

where &, and &g are the rates of change of strain in the radial and circumferential
directions, respectively. The biaxial stress-strain rate law is [13]

1
g = kT~ ! (T@ — ETT), RS - 3
1
B?l1@;—5@)w”m"mmnm”m"mm"_@)
where
T=(2 =13 =T T) 2 oottt e et e e e e (6)

To solve the problem for a disc with no central hole and supporting, say, no edge mass
we must solve equations (1) — (6) simultaneously, subject to the boundary conditions
Tg =T,atr =0,. e e e e e . (7)
7, =0att=a. : ..(8)
the simplest way of solving the equatlons seems to be to change the independent variable
by making the substitution

x = ar? e e e e een e e e (9)
Equations (1) and (3) become, respectlvely
dt, T9—7, 1 10
dé'@ _ gr — 8.9
dx  2x

.(11)

Differentiating equation (4) with respect to x, substituting for % from equation (11) and
using equations (4) and (5) we have:

354‘30’”m(%f] d[ﬂl—&m—Sﬂ—WO()(%ﬂ—3m
(12)

where, as before, m=1/n.

Equations (12) and (10) make it possible to use a Runge - Kutta method to “march out”
values of t, and 4 for increasing X, if the value of 7, (= 74) is known at x=0. We do not
know the values of 7, and 4 at the origin, but we are free to assign a value, say, 7,, to them
and apply a scale factor to all the stresses later on.

Equation (10) is determinate at x=0, but using L "Hopital s rule we find

0 9T _ 1 gex=o0. 13
T g Latx= cee e e eeene e e (13)
Simultaneous solution of equations (12) and (13) at x=0 gives the following starting derivatives
at x=0
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dr, _ 1 1+6m

dx 4 (1 + Sm)
dtg _ 6m
ax = 4(1+3n9

..(14)

Fig. 2 shows the solutions, obtained by computer, for m=0, m=0.4 and m=1. It is easy to
show that for m=1 dt, /dx and dtg/dx are independent of x. The radial stress becomes zero at
x/1,=16/7; thus by equation (9), substituting for o

pw?a?
70 = 0447 (= —)

It is readily checked that T has a maximum at r=0.

pw?a? .
For m=0, t, becomes zero at—— 3.25; so far m=0, 7,4 = 0308( 5 ) In this
case, of course, 7 is constant over the Whole disc.
For discs supporting edge mass the boundary conditions are different. If the total mass,

representing turbine blades, etc., is equal to B times the mass of the disc itself, and the is no
circumferential cohesion in this mass, it is easily shown that at the rim, radius a,

ppa*w?

T .. (15)

T, =

A point such as A, Fig. 2, may represent the radial stress condition at the edge of the
hole. Let the coordinates of A be

X
o ok
To To
From equations (2) and (9):
o9 1 16
aRq? T e e (16)
Combining equations (15) and (16) and substituting k = 7,,7, We have
2k
P=7

Thus a line radiating from the orogin as shown in Fig. 2 intersects the graphs of
:—r fo dif ferent values of m at values of x/t, representing the edge of the plate for the

same value of the parameter 3.
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It should be noted that the solutions to this problem and similar problems presented in
[17], sections 7-9, are net exact solutions, as implied in [17], but approximate “energy”
solutions based on the deformed shape of linear-elastic plate [18].

the equilibrium equation at radius r is:

aM, Mg —M, pr
o= - S e e e e

e oo (17)

where M,. and My are the radial and circumferential bending moment per unit length and
p is the uniformly distributed pressure.
The strain rate compatibility equation is

dicg ey — g

- - T G T:)

where kg and k, are the rates of change of curvature in the radial and circumferential

directions respectively.
Using the “plane sections remain plane” conditions, it is easy to show (in the absence of
membrane effects) that for a plate element of thickness H

k. = GM™ 1 (Mr - %Mg) R ¢ L)
kg = GMn1 (Mg - %Mr) ORI ¢711)

where

1
M = (M.% + M — MgM,)?
and R 2§

1 n 2 2n+1
i=b(1+3) ()

Equations (17) — (20) are an exact analogue of equations (1) — (5) for the rotating disc. The
quantities M, My, k,., kg correspond to t,, T, €,, €5 while p/2 corresponds to o. The boundary
condition 7, = T4 at r=0 also carries through. The equations may thus be solved in the same
manner.

For the simply-supported plate the boundary condition M=0 at the edge corresponds to
the boundary condition for the rotating disc carrying no edge mass. For the clamped plate the
relevant boundary condition at the edge is k4 = 0 or, using equation (20), M, = 2M,. The
solutions (see Fig. 2) have to be marched out further to the point where this condition is
satisfied. In the case n—oo there is a slight complication in that at the clamped boundary dM;
/dr —o0: this difficulty is easily overcome, however.

The greatest stress 7 is readily found from th greatest value of M. Fo the clamped plate,
the greatest stress occurs at the edge, while for the simply-supported plate the greatest stress
occurs at the centre — expect for the case n—o, when the stress is equal to the yield stress
everywhere.
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E. Symmetrically stretched sheet with hole and ring reinforcement.

The results are taken from [16].
F. Thick — walled tube under internal pressure.

This problem was first solved by Bailey [19]. The analysis is much simplified by the fact
that the strain rate in the axial direction is zero if the ends of the tube are closed. It is readily
shown from the results (which are obtainable in [20]) that

T=—2 23 e (22)

a—Zm_b—Zm

where a and b are the internal and external radii, respectively. When m=0 the expression
becomes indeterminate: L Hospitals rule gives the perfectly plastic solution

pV3

2In (g) |

T =

Calculation of dF, / dm at m=1
For any value of n for a given set of external loads we have a set of stresses T throughout
the structure which are in equilibrium with the external loads, a set of strain rates & which are
compatible and which are related to the stresses by the material law

E=BT™ ettt ettt eee . (23)

The stress distribution is identical to that which would be obtained for the same structure made
of non-linear elastic material

€= ByT™ oo eee e eee e e e (237)

For the structure made of the analogous elastic material, consider a small change dn in n, and
the associated changes in ¢ and 7. Differentiating equation (23") with respect to n:

Bj]ll | B] I l”,l mEm mEm mEE mEE mEE mmE ....(2 l)

Sp
l ‘] l | mEs mmm owmm 25
- B | B z l”,[ ® mEs mEs mEm mEE mmE ----( )

Now Z—; represents a compatible strain distribution, and Z—; represents a stress distribution

in equilibrium with zero external load. Equation (25) may thus be interpreted: 2—; and 2—; are

changes in strain and stress in an initially unstressed linear-elastic structure (modulus of
elasticity = 1/B;) which is subject to a strain distribution (“thermal strain) of B, T Int.
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Thus, if the stress distribution is known in the linear case, n=1, the rate of change of the
stresses (and in particular of the greatest stress) with n may be determined from, essentially, a
linear-elastic thermal stress problem, For n=1, of course,

dt drt

dm  dn

The result, as far as Fy, in concerned, is independent of the magnitude of 1. It is most
convenient to scale the stresses so that in the greatest stress has absolute value unity. Fig. 3
shows a graph of t Int as a function of t for this case.

The analysis has been presented in terms of one-dimensional stress. The essential
features carry through to triaxial stress systems. It should be noted that the “thermal” strains
consist of changes in shape rather than changes in volume, as in conventional thermal stress
analysis.
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